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Abstract

f-

Let y = y + X1 + e, =1 ..... n, . . be a linear regression 4iodel,

where (x) is a sequence of experimental points, i. e., known p-vectors, (e) is a

sequence of independent random errors, with med(e) = 0, 1 = 1, 2 ..... Define the
minimum L -norm estimate of , , ' I 1 , to be chosen such that

nn

I-1

n

- min I In - a - x0.

Under quite general conditions on (x,) and (e, the strong consistency of the

minimum L -norm estimate is established. Further, under an additional condition on

(x1), it is also proved that for any given V > 0, there exist constant C > 0 not

depending on n. such that

l% - <l2 + - 1

n :n I

I exp(-Cn), for large n.
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Key words and phrases: Ll-norm estimation, consistency, exponential rate,

linear model, median regression.



1.ntrodution.

Consider the linear regression model

•i W a + x!O + e., i - 1, 2. .

(1.1)

where { xi = (xii....x ) } i = 1, 2 ..... is a sequence of experiment points,

i. e. known p-vectors, B = (B ..... .. is the regression-coefficient vector, and

e1, e2 ... are random errors. To estimate the unknown vector B based on the

observations y1 .... Y n' a popular method is the Least Squares (LS) method, which

n 
2

takes B minimizing the sum of squares (Y. - x B) as the estimate of B.
_n 1

The merit of LS estimate is that it is easy to compute (being a linear

combination of y1 . . . . . y ), and that, in case where the random errors are

independently and approximately normally distributed, the LS estimate possesses

many desirable properties. But these happy conditions cannot be taken for granted in

many practical applications. For example, in econometrics, there now exists a

considerable body of evidence that attests to distributions with infinite variance

being a reality (distribution of income, behavior of speculative prices, distribution of

firms by size etc.). Even in cases where the error variance can reasonably be

assumed to be finite, the error distributions may have heavy tails, deteriorating the

performance of the LS estimate.

So it is under this background there has now been much interest in using

more robust methods, among which the L1 -norm method is a forerunner. This

n n
2method seeks to minimize lyi - x' instead of (Y. - xB) 2 , and the

I~ i,,
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minimizer B is taken as the estimate of B. True, the calculation of B is

considerable more complicated as compared with the case of LS estimate n but,
-n

since the successful establishment of the link between the L -norm method and the

linear programming, the computing problem no longer presents a barrior in the face

of modern computing facilities.

Another problem is the sampling theory of the estimate. Since it is not likely

that a workable small-sample theory can be established, the asympototic theory is

of great importance. The first and foremost problem in the asympototic theory is to

establish the consistency of this estimate under weak conditions.

The asymptotic theory of the L 1-norm estimate is much more difficult as

compared with the Least Squares theory, owing to the mathematical difficulty of

working with the absolute value function Huber (1981) proved a general theorem

concerning the consistency and asymptotic normality of a class of robust estimates

of linear regression coefficients, but the result does not apply to the L 1-norm

estimate, since the absolute value function is not differentiable at zero. In recent

years some authors, for example Oberhofer (1982), proved the weak consistency of-

the L -norm estimate under rather strong conditions.

In this paper, we develop a method in dealing with the consistency problem

of the L -norm estimate which enables us to obtain general results concerning the

strong consistency and exponential rate of the L -norm estimate under very mild1

conditions.

2. Formulation of the Theorems.

In some applications it may be known in advance that the regression plane

passes through the origin, i. e. a = 0 in model (1.1). In this case, according to the

L -norm criterion, the solution B of the minimization problem

1 V I
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i- i Blnl m El' !

gives an estimation of B.Define

nn

d n - max [ 1. , III'fl - IIxnfl

where IIxII denotes the Euclidean norm of vector x

Theorem 1. Suppose the the following conditions are satisfied-

(2.1)

2) There exists constant k > 1 such that

dAk-I 0

(2.2)

*3) e 1 1 2 .2 . are independent random variables, and

med(e.) -0, i - 1, 2,..

4) There exist constants C > 0, C 2> 0 such that

1- A 2
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P{ -h < e. < 0 _ C 2h,

(2.3)

P{ 0 < e.i < h C C2 h

(2.4)

for all i = 1, 2.... and h c (0 ,C 1 . Then we have

-rn n a.s.

Further, under the additional condition that for some constant M > 0

2

p/d 2 >n, for large n

(25)

converges to B at an exponential rate in the following sense: For arbitrary given

c > 0 there exists constant C > 0 independent of n such that

P{II0 - 01l 1

00- CnS0 (e c ).•

Theoretically speaking, the nonhomogeneous model (1.1) is merely a special

case of the homogeneous model y, = x' + e., i = 1, 2,.... in which first
I- I

element of each x i is 1. Therefore, as a corollary, from Theorem 1 we can obtain

an analogous result concerning the estimates a, B of c,, B: We need only to
n -n

n
replace the matrix S = x' by

n E I i
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n x
i-1

S
n

n n
x. x.x.

i X. IXI !

and define pn as the smallest eigenvalue of S.n But, since Sn is a matrix of higher

order as compared with S, it may be of some advantage to give the following

result

Theorem 2. Suppose that the we have model (1.1), and the conditions of
n

Theorem 1 are satisfied, except that here we define S as . (x - x) (x- x n

n

where x = (1/n) . x, then

lim a - a. a. s.

ni

lim !n " a. s.

n-.c
-~~ n. n

Also, under the additional assumption (2.5) for arbitrarily given > 0 we can find

constant C > 0 independent of n such that

P{I I - al2 + 110 oil >

-Cn<O0(e. - c ).•

In this formulation, Theorem 2 is not a trival consequence of Theorem 1, and

(%W * * %*** **** ***--.................................-- * *
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through the basic idea of proof are the same for the two theorems, some

important differences in detail emerge. Therefore we shall give the detailed proof of

both.

3. Comments on Conditions.

Before entering the details of proofs, we make some remarks concerning the

conditions of the theorems.

1. The first two conditions involve only the sequence of experiment points

N 1 , while the latter ones involve only the error sequence {eli . In any theoretical

problem concerning the linear model (1.1), it is always desirable not to introduce

assumptions involving both simultaneously.

2. Conditions 3) and 4), taken together, guarantee the uniqueness of the

median of e., i = 1, 2,....Condition 4) stipulates that the random errors (es)

should not be "too lightly" distributed around the median zero. The requirement on

the uniqueness of median is reasonable in view of the "median-regression" character

of the model. As f or the conditions (2.3) and (2.4), it is likely that they are not

necessary and further improvements are conceivable, yet it is easily seen that they

cannot be totally dispensed with.

Example 1. Take the simplest case in which we know in advance that =0.

In this case the Minimum L 1-norm principle gives

-med(y,, .. t

as the estimate of a. Suppose that e I, e 2 ' are mutually independent, e. has the

following density function:
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[ xI/i 2 o x : xif.(x) - i - 1, 2,
0, otherwise,

Then

Pie. 11} 1/2 - 1/ (2 i2) i -. 1, 2,. .

Denote by n the number of those e's for which /n < i < n and ei >1. An

application of the Central Limit Theorem convinces us that for given 6 E (0, 1/2)

we have

Picn > n/2) > 6

for n sufficiently large. This implies that

P{ > 11 > 6n

for n sufficiently large, hence a is not a consistent estimate of ax.
n

3. Conditions 1) and 2) regulate the behavior of the sequence of experiment

points {x 1. 2) stipulates simply that x should not go to infinity "too fast' as nnn

ca. A close inspection of condition 1) convinces us that this is also implied by 1).

Condition 1) requires that pn should tend to infinity with some rate. In the

case where {x} is bounded, p n should tend to infinity at a rate faster than logn. In

the LS theory, under some general conditions (see Li(1984)) on the error sequence

{e.), the strong consistency of LS estimates is guaranteed by requireing only p
nnco. This gives one the hope that condition 1) can be weakened to p n O. Whether

or not this is true remains an open question.

The point that "x should not go to infinity too fast" is of interest as it

)n



8

reveals a difference between the L -norm and LS criteria For LS estimate, in

general the faster x goes to infinity as n. w, the more likely is that it becomes
n

consistent The following example shows that in the L -norm case, going too fast

(of x ) to infinity may indeed render the estimate inconsistent
n

Example 2. Suppose that in model (1.1) p = 1, the random errors e,

e2 ... independent, P{e = 10i} = Pte. = -101 = 1/6, and e is uniformly

distributed over the interval (-1/3, 1/3) with density one. For convenience assume

ithat the true parameter values are ax = 0, 8=0. Let x. = 10, i = 1, 2.

Define the event E = {e = 10 n}. Then P{E n = 1/6. It is readily seen thatrn n n

when E occurs we have
n

a -bxn-1,
n le, -a- bxI > x10 - , when lal < 1/10 and IbI < 1/10,

;.i=1

and

in=i1, - a - bx.Ilam0,bi-I 10

These two facts, taken together, give

P{ max (1%1, In1) • 1/10} - P{e) }  1/6.

So even weak consistency does not hold.

Example 3. This example shows that, even in the case that e, e2 . . are

independent and identically distributed, consistency may not hold in case p tends to

infinity too fast

Suppose that in model (1.1) p=l, the true parameters ax = 0, 8 = 0, the
k e-10k

random errors are iid. with a common distribution P e= 10 } = P {e

A"1
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1/ [k(k+ 1)], k = 6, 7 ...... and e1 is uniformly distributed over (-1/3, 1/3) with

density 1. Let x. = 10', i = 1, 2....

Define the event E = { Iei < 10n n/2 < i < n}. Then it is readily seen that
-2

P(E ) e 2 as n .* c. Suppose that E does not occur and denote by i the first jn n n

such that j > n/2 and 1 e.I> 10n, then we have in < n. An argument similar to that

employed in Example 2 gives us that max ( 1, 1i 1) > 1/10. Therefore P{J j >
n n

Aor I 1/10, for some i, n/2 < i < n} > P{Ec } -b 1 - > 0 and (a,

n n n
is not strongly consistent

From a practical point of view it can be said that the conditions 1) and 2)

are reasonable and would be satisfied in most applications. An important case is that

exN is bounded, or more generally, I Ixi = o(i/logi), and

li S /n - A exists and positive definite.
n

(3.1)

, These conditions are satisfied when x, x2 .... are iid. samples of a random

vector x for which E(xx') exists and is positive definite.

4. Proof of Theorem 1.

The following lemmas will be needed in the proof.

Lemma 1 (Bennett.) Suppose that C ..... Cn are independent random

n n
variables with I < b < . Let 0 = (1/n) Ei and o = O1/n) Var,. Then

gi 1= 1

for each c > 0, we have
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n
P{1 (1/n) Z 4, - I-> 2:

5 2exp{-n 2/[2(2 + b()).

The proof of this lemma can be found in Hoeffiding (1963).

Lemma 2. Suppose that {e.), i = 1, 2 ...... n are random variables

satisfying the conditions 3) and 4) of Theorem 1. Also, let {a i = 1 ..... n be a*
sequence of constants and a max I a, 1. Then there exist constants C > 0, and

0 > 0, depending only onaCI and C2, such that

n2
P{ I (IeI - le, - a. 1) > -eBn)

5S 2exp{-CB 2.
n (4.1)

n
2 2

whereB = a.

i-Ia

Proof. Without loss of generality, we can assume that a > 0, for each i 1,

. Note that (4.1) is-automatically true if a = 0. Thus we can assume that a >

0, which implies that B2 > 0. In case of a* > C1 , we can suitably adjust C such
n2

that (2.3) and (2.4) are true for each i and h c (0, a*).

Define a = le, I - le, - al. It is easy to see that

de~ IS
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a., if e. > aI I -- i

" -a if e < 0

2e. - a., if 0 < e. < a..
I I I I

Hence

< ai < a '

EC,< -a.P{e. < 0 + a.P{e > a./2},

2

-a.P{O < e. < a./2 < -C a 2/2,

2 2

VarCi < EC < a2

Take e =C/4andC= 2 /[21 + a*c)]. Using Lemma 1, we have0 2 0 0

n O

Ci 0 n

-PU1/n) - EC ) • -(1/n)(.. EC i + 0B n)}

2 2:E P{(W/A) E (C - EC,) 0 B n/n)

2exp{-n(o B2/n) 2 /[2(B 2 /n + a oB n/n)])
0 ,n n 0n

-2exp{-CB 2 1* n

Z V I* ~ Z, *4.IA* ~ **%
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which comletes the proof of Lemma 2.

Lemma 3. Maintaining the assumptions and notations given in Lemma 2, and

defining

1, if e. > a./2

11.=

-1, if e. < a /2,

we have

n 2 2P( I a Ti i C 2exp{-CB 

The proof runs largely along the same line as in Lemma 2. So the details are

omnitted.

Now turn to the proof of the theorem~ Without loss of generality we assume

that the true parameters B=0.

Fix cO< e • oanddefineA=B[0:11 1 . SplitAntom=m

k

parts A1. . . A Msuch that the diameter of each part does not exceed ein . It is

easy to see that this can be done with

m -mmnc (pn)~'

iI11

Choosa arbitrarily a point B t f rom each A., t = 1....m. Def ine b =x's.
tt

Thmax Ibj. 1) andsalong ti /b.t Then we have I La 2 < tfor eacht and i

Also, we have

B 2 a 2imBS tb2

.1 ti 0 n

omitte%% ctI~~ V~ :.-.:~-v~,% ~ .. 5 ~ '

5, * S
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>p/d 2~
n n

Hence, by Lemma 2. we have, for large n,

n

P( (le I - ei - at I) > -C) t

2 2 2

S2exp f-CB 21 I < 2exp f-Cc p /d2 1n

If r. Atand jj -I,-s )< -,te

nn

(fleiAan I 11 - le - a) <-cthe

nn

E (Isl - ei - ai + E~/ I)( -0)

n n

P1 E (le4 - min Ea.I le+ !10

nn

SP( (lei I le at, 1) > -



< 2exp{-Cc
2 p /d 2

-- n n
(4.2)

-1:

where A' = {bt  : A cA)
t t -- t

Now let I > 1. Define

1, if i > a ti/2
Tlt, im-1, ... ,n ,

-t, if ei < a ti/2

and

Ai " Il - lei 1a. l

where a = xB,. B e A'. Let us consider the following cases. In each case, we

shall use the fact that Ia - a, = Ix' ( - BI lb< d/n = o(l/n). Here and in

1i P

the sequel, o(l/n) is uniform in t and i.

Case a a > a /2 > 0 and i < a t/2.Cae a i_ ti I t

We have

a, - Ie.l - Ie - ail - (9 - l)a. ,S

< l i  ail - (R- 1)8ti -0 (1/n))

leil - lei - al + (M - 1) (atit~i + 0(1/n))
(4.3)

Case b. a > a /2 > 0. and 1 > a /2.
- ti I- t
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We have

I e, Il - Ie - a I + (9. - 1) a

e II - lei - a, + (I - 1) (at, + o(¢/n))

I I1 - lei - aI + (I - 1) (a,t11 + o(1/n)),

which shows that (4.3) is still true.

Case c. 0 > a /2 > a and a > a /2.
- i i ti

We have

Ai " I1 I - - ail + (R - O)a.

I,1 - Ie, - aI + (9,- +)( o(IA)

- - I

I eI i -a,1 + ( - O(a titi + o(1/n)).

Hence 14.3) is still true for this case.

Case d. 0 > a /2 > a and a < a /2.tI - i i --

We have

A - I.il - lei -a + (U - 1)O1a

I e I - Ie,- aI + (1 - 1) (IatI + o(/n))

Slei I - le- a, I + (. - 1) (atiti + o(1/n))

which also shows that (4.3) is true.

- *.- -~\V~,f V ~-~/'~\ * ~ V ~v ~ ~<~ ~ ~ V I
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case e. 1a~ 8, 1 Ia 1/2.

In this case, we have that Ilat, 21 -t a1 l I(1/n) hence a o= 0(/n).

Therefore

1;0.1i - lei . LaiI

a, eJ a, I I + (1 1) o(I/n)

le I* le1 a, I + (1 1) l(at,1 nt +0o(1/n)),

and (4.3) is still true.

Summing up the f ive cases, we see that

6 1l1e,I - I e, a, I + (A - 1) (a. titi +0o(1/n))

Let nI' = ~: c A' and A > 11. By (4.2), (4.3) and Lemma 3, we have
t -- t

n n
PQ IelI- min Ie - x!01I >01

i1El I Il
t

n Ii

<P( E lei - min I lei - X!01 10)

Sol OWA i- 1

n

+ P(I ati ti-

40.xp-C 2 p/d 2 )

Denote =1 jAB B A and A > 1. Note that b > 1, we have IC1

Aso, (11I11I>c) Ufl Ufn'l Hoewe obtain
-tal t a t
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n1 n

P{T le I- min Z e, - x!.l > o}
11i IIli I- 1 I

n n n
E E P{ I le. I - min E. - x: I 0}

t'l 1 jlII' i-1

-t

< 
1mexp{-C2 p /d 2

"% < 4 (pn) {exptCCP /d 2
n n

(4.4)

which, together with (2.1) and Borel-Cantelli Lemma, implies that

.1. P{1I II > t. i. o.} - 0

This proves the strong consistency of . Finally, the last assertion of the theorem

follows directly from (2.5) and (4.4). The proof is concluded.

Remark. If (3.1) holds, then condition (2.2) for k = 3/2 is fulfilled. If we

further assume that d = oWn/logn), then (2.1) is satisfied. Also, it is easy to see

that (3.1) and the boundedness of d imply (2.2) and (2.5) which guarantee the

exponential rate of the convergence of the L -norm estimate. It may be noticed that

2 -Cnsince in general we have pn < nd n, we cannot get a rate faster than O(e ) from

the proof of Theorem 1. In fact, under the assumption that e 1, e 2 .... are

independent and identically distributed, it can easily be shown that P{I B - 1 l

c} cannot tend to zero at a rate faster than O(e - Cn) (i. e. P{ Il -Is l £1 =

O(g(n)) and eC g(n) . 0 for any C > 0 as n -e w).



18

5. Proof of Theorem 2.

Without loss of generality, we can assume that a = 0, 0 = .

Given c, 0 < e < 1, and define

2 2
A a {,, B'): 2 + - £ 2.

Split A into m = m parts A 1.... A such that the diameter of each part does
S/ k

n p lk n p +1l lk weeCi oiie
not exceed /n and that m < ((p + I)n) (P 1)k = C 0 where C is a positive

0 0
constant Choose arbitrarily a point (a, B' 1' from A and define

ttt

0 b max nb'ti"

ti " -t t <,<

Consider the following two cases.

Case 1. b < c/4.

Define a = a + b. Then we haveti t tiS

lat I I e + e/4 < 2, i - 1, ... ,n.

Arguing as in the proof of Theorem 1. we get

n

PI (le i  - lei- ati 1)  -el

* ,,1
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n

.S 2exp{-C . a ti}
i- I 1

and consequently

n n
P{ E e II M main E lei- i(a+x!o)l > o

j-l (c. 0')'eAt i-1

11

S 2expf-C a 21.
E ti

(5.1)

Noticing that b < _/4, we have

n n

* . at2 -n(x +x'. ) 2 + I'TB6

P n(E/2 - /)i2 , 2/E 16.

Hence, by (5.1) and (5.2) we have

:E 2exp{-Cn).

(5.3)

Case 2. b > e/4.
t

Def ine a - ,( n t + b l" )/(4b. We have

ti t tg' '¢ t

*M **II ~ *~
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lat I I e + &/4 < 5/4.

As before, using Lemma 2, we can show that

n
P{ E (leiI - lei - atil) > -

n .

< 2exp{-C a .

For (c, B')' c A, define a. = c(ax + x'B)/(4b). As in the proof of Theorem 1.
t i- t

we have

p

n n

I'

P{ 1e1  - min le tail~ 0)
jul (a,0') 'cA t-

nt

5 4exp -C a 1.

(5.4) "

Noticing that c/(4b) < 1, we have
t

((~/bt)(ax, 8):(a. B') A t I I )

J{Lcx B)' (c,') £A~ t it I ).

(5.5) "

Hence, by (5.4) and (5.5) we obtain

P{ E leil - M in leI.- I,(x! +X) 1 O}
i=1 (a, B') 'cAt is1

* * .q
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~'2
< 4exp{-C a .

i= ti

(5.6)

Since

n. a . ({ t 2 n' 2
a (c/4b ((x + X!)

j a=1 -

> 2 /(16b 28'T , 6d )

we have, by (5.6),

n nP{ Z lei - Min E I e.- (a+x!) 0}
i=u (a, ')' cAt i=1

:5 4expf-Cp /d 1,
nfn (5.7)

where C > 0 is a constant independent of n, but may be taken as different value at

each appearance.

From (5.3) and (5.7), we finally obtain that

n n

P( I le I mine - cx - x.B( 2 0}

2p1) 2

< 4((p + 1)n) (p+l)kexp-Cp n/d 2
n n

(5.8)

- @= , W'w ,w % ,","W . , ".- w, '.-W ' - -. -, . .P .-A %. w r, , -, ,-, . ,
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In view of condition (2.1), applying Borel-Cantelli Lemma we get

n -0, a. s.

-0, a. s.
.n

These prove the strong consistency of x and B. The last assertion of the theorem
n -n

follows from (2.5) and (5.8). The proof is complete.

N
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